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Abstract

Multi-scale analysis using the asymptotic homogenization method is becoming a matter of concern for micro-

structural design and analysis of advanced heterogeneous materials. One of the problems is the lack of the experimental

verification of the multi-scale analysis. Hence, it is applied to the porous alumina with needle-like pores to compare the

predicted homogenized properties with the experimental result. The complex and random microstructure was modeled

three-dimensionally with the help of the digital image-based modeling technique. An appropriate size of the unit

microstructure model was investigated. The predicted elastic properties agreed quite well with the measured values.

Next, a four-point bending test was simulated and finally the microscopic stress distribution was predicted. However, it

was very hard to evaluate the calculated microscopic stress quantitatively. Therefore, a numerical algorithm to help

understanding the three-dimensional and complex stress distribution in the random porous microstructure is proposed.

An original histogram display of the stress distribution is shown to be effective to evaluate the stress concentration in

the porous materials.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Multi-scale analysis for various advanced materials with microscopic heterogeneity has been one of the

major topics in both computational mechanics and materials science. Among some computational methods

for the multi-scale analysis, the asymptotic homogenization method has been successfully applied to

the composite materials including polymer matrix composites (PMC) and metal matrix composites

(MMC). Finite element method (FEM) is used to solve the partial differential equations derived by the
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homogenization method. This method was firstly developed by many applied mathematicians to solve

linearly elastic problem and thermoelastic problem of heterogeneous media considering the microscopic

properties (Sanchez-Palencia, 1980; Lions, 1981; Lene and Leguillon, 1982; Francfort, 1983). During the

last decade, the efforts have been devoted to the enhancement of the homogenization method to solve many
nonlinear problems that we encounter in the design, manufacturing and evaluation of composites (Guedes

and Kikuchi, 1990; Takano et al., 2000).

One of the problems involved in the multi-scale analysis by the homogenization method is the lack of

verification by comparison with experimental results. This sometimes becomes a hurdle when the materials

scientists and engineers use this numerical method. In the application to the fiber reinforced PMC, Duvaut

and Nuc (1983) compared the numerical prediction of the homogenized elastic constants of uni-directional

fiber reinforced PMC with the conventional prediction rules. Bigourdan et al. (1991) showed the com-

parison with the experimental result in the prediction of the homogenized elastic property of woven fabric
reinforced PMC. The authors (Takano et al., 2001a) verified the accuracy in the nonlinear problem. That is,

the deep-drawing simulation of knitted fabric reinforced PMC was conducted using the homogenization

method and the largely deformed microstructures were compared with the experimental result. In the above

papers, the accuracy and the reliability of the homogenization method were shown. However, for other

materials such as the porous ceramics studied in this paper, we can find no literature that proved the ac-

curacy and the applicability of this method. Hence, in the first part of this paper, the elastic constants of a

porous alumina with needle-like pores were measured and predicted by the homogenization method. For

the practical modeling of the complex microstructure architecture, the digital image-based modeling
technique and the voxel mesh are employed. The review of this technique is described later.

The second problem may be related to the assumption of the periodicity of the microstructure in the

homogenization procedure. Whether the assumption of the periodicity is approval or not depends on the

representative dimension of the microstructure and that of the macroscopic structure from the theoretical

point of view. Moreover, the porous ceramics have random microstructure architecture, and therefore this

assumption may cause some numerical error. It is shown in this paper that the periodic boundary condition

compulsorily put on the microscopic unit cell model leads to the numerical error in the calculation of the

microscopic stress.
The third problem is concerned with the evaluation of the predicted microscopic stress. No way has been

shown to the materials scientists and engineers how to use the calculated microscopic stress in the design of

advanced materials. One possibility may be the prediction of the microscopic damage propagation and the

strength. In the analysis of damage propagation for woven fabric reinforced PMC, the microscopic stress

was used with the failure criterion and the damage mechanics (Lene and Paumelle, 1992; Takano et al.,

1999; Fish et al., 1999). However, the verification is limited to the qualitative agreement with the experi-

mental data.

In many works on the enhancement of the homogenization method to the nonlinear problems such as the
elasto-plastic problem (Jansson, 1992), creep problem (Wu and Ohno, 1999), large deformation problem

(Takano et al., 2000) and buckling problem (Okumura et al., 2001; Saiki et al., 2001), the microscopic stress

is of course used because the constitutive law is dependent on the stress. However, as mentioned above, we

can find no literature that showed the verification except the authors� previous work (Takano et al., 2001a).
A problem lies essentially in the difficulty to understand the very complex stress distribution in the

microstructure. The microscopic stress is rapidly changing in a small length scale depending on the hetero-

geneity. Moreover, we can hardly understand the three-dimensional distribution in the microstructure and

the relation between the stress concentration and the heterogeneity. The current commercial postprocessors
for finite element analysis do not have enough function to evaluate quantitatively the phenomena inside the

material. Hence, in the latter part of this paper, a numerical method is presented to help evaluating the

three-dimensional stress distribution quantitatively and understanding the relation between the stress

concentration and the heterogeneity.
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2. Measurement of elastic constants of porous alumina

We show first the material to be studied in this paper. The porous ceramics are believed to be useful for

filters, heat insulators etc. with increased damage tolerance and reduced energy consumption. The design

and the control of the microscopic pores are the key issue for the development of advanced porous cera-

mics. Therefore, the study on the effect of the microstructure on the macroscopic properties is essential.

However, the classical rule of mixture is basically a function of the porosity ratio, but cannot take the

microscopic geometry into account. The numerical approach using the multi-scale computational method is
expected to provide the breakthrough in this field.

The aims of this paper are to verify the numerical prediction and to propose a method to evaluate the

microscopic stress, as mentioned before. A test material made by alumina with needle-like pores was

sintered by the addition of fugitive inclusions. The variations of the shape and the amount of the fugitive

inclusions lead to the control of the pores. It was confirmed through observation by a scanning electron

microscope (SEM) that no microscopic crack exists.

The Young�s modulus and the Poisson�s ratio were measured by pulse echo method for one of the sin-
tered porous alumina. The porosity ratio of this material was 3.1% by measurement. The averaged length of
the needle-like pores is approximately 150 lm, and the averaged diameter is approximately 10 lm. Note
that the macroscopic component is usually in the scale order of 10 cm to 1 m, which means that the di-

mension of the microstructure is far small. Table 1 shows the experimental result. In this measurement, the

isotropy was assumed for the macroscopic properties. It is compared with the computational result later in

this paper.

3. Digital image-based modeling of microstructure

3.1. Overview

The finite element modeling of the complex three-dimensional microstructure of the heterogeneous

materials such as composite materials and porous materials is a very cumbersome and troublesome pro-

cedure. For the practical use of the multi-scale analysis, the automatic mesh generation is essential. We can

find some literatures (Shephard et al., 1995; Miravete et al., 1999) in which the complex textile composites

are subdivided into finite element mesh using the tetrahedral elements. However, for the porous ceramics in

this study, the microscopic geometrical information itself is unknown and must be captured experimentally,
which costs so much.

Therefore, a digital image-based modeling technique is employed. It was firstly proposed by Hollister

et al. (Hollister and Riemer, 1993; Hollister and Kikuchi, 1994) to model the porous microstructure of

human bone in the biomechanical field. The detailed procedure is described in the application to the metal

fiber reinforced MMC (Terada et al., 1997). Recently, we can find other applications to concrete (Nagai

et al., 1998) and human bone (Adachi et al., 2000). The three-dimensional image of the inner microstructure

is captured first by stacking the multiple cross-sectional images. The well-known pixel for two-dimensional

image is enhanced to the voxel for three-dimensional case. The voxel is directly used as the cubic finite
element, and consequently the voxel mesh is automatically generated.

Table 1

Measured elastic constants of a porous alumina with 3.1% porosity ratio

Young�s modulus (GPa) 366.0

Poisson�s ratio 0.232
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One of the demerits using the automatic voxel meshing is that very large number of elements is required

to express the complex microstructure architecture. This results in the very large-scale analysis. Therefore,

an element-by-element preconditioned conjugate gradient (EBE-PCG) method is usually adopted to solve

the stiffness equation (Hollister and Riemer, 1993). In this study, the diagonal scaling is used as the pre-
conditioner, which is called EBE-SCG method.

Another problem is that the accuracy of the numerical results is really bad at the interface of dissimilar

phases in the composite materials. It was investigated by Hollister and Riemer (1993) and the Gaussian

filtering technique was used to obtain the stress at the interface. Nagai et al. (1998) developed an interface

element especially for the voxel meshing. In this paper also, this problem is discussed later.

3.2. Application to porous alumina

Fig. 1 illustrates the flowchart of the digital image-based modeling procedure used in this study for

porous alumina. In the digital image-based modeling, the resolution is important to ensure the quality of

modeling and analysis (Terada et al., 1997). Here the resolution is equal to the voxel element size. To

capture the image, the use of a micro-CT scanner is the most convenient way. However, the resolution of

the general-use micro-CT scanner is limited to around 5–10 lm. It is insufficient to express the micro-
structure precisely because the averaged diameter of the needle-like pores of the target material in this study
is approximately 10 lm. To this end, the porous alumina was polished precisely by every 2 lm, and the
cross-sectional images were captured by a charge coupled device (CCD) camera as shown in Fig. 1. The

accuracy in polishing was monitored so that the error is within �0.25 lm. A typical cross-sectional image is

Fig. 1. Schematic of digital image-based modeling for porous alumina.
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shown in Fig. 2. The demerit of this method is that very long time is needed for polishing, but the procedure

is almost automated. In pursuit of the cost-effectiveness, we developed a specimen holder as shown in Fig. 1

so that many specimen can be polished at a time. The finer the resolution is, the better accuracy is obtained.

However, the cost must be taken into account in the engineering sense to obtain accurate enough solution.
The authors have so far investigated the accuracy of the voxel modeling in the homogenization analysis of

fiber reinforced composite materials (Takano and Zako, 1995) and porous materials with spherical pores

(Kimura et al., 2002). To this end, the resolution of 2 lm in this study was determined considering both the

cost and the accuracy. In all the following numerical analyses, the voxel element size is 2 lm. However, as a
numerical test, the voxel mesh with 4 lm element size was generated from the images with 2 lm resolution,

and we found the relative error was approximately 2% between numerical results with 2 and 4 lm element

sizes. Therefore, we can say the above-mentioned selection of the resolution that is equal to the voxel ele-

ment size is adequate.
For the test material of porous alumina with 3.1% porosity ratio in Section 2, the reconstructed three-

dimensional voxel mesh is shown in Fig. 3. Each voxel element size is 2 lm that is equal to the resolution in

Fig. 2. Example of cross-sectional image of porous alumina with 3.1% porosity ratio.

Fig. 3. Voxel mesh of porous alumina with 3.1% porosity ratio for the polished whole region (800 lm� 800 lm� 100 lm).

N. Takano et al. / International Journal of Solids and Structures 40 (2003) 1225–1242 1229



the image capturing process. The dimension of the polished whole region in Fig. 3 is 800 lm�
800 lm� 100 lm. Fifty-one cross-sectional images are stacked. In Fig. 3, only the pores are displayed.
Here, both the solid alumina part and the pores are subdivided into voxel elements. This point is discussed

later in Section 5.3. We can see that the needle-like pores are dispersed randomly, but in a macroscopic
sense almost homogeneously. The measurement of the elastic constants in Section 2 was carried out for the

whole region to obtain the macroscopic value in an averaged sense.

In the next section, the homogenization method is introduced and the unit cell modeling from the whole

voxel data in Fig. 3 is discussed.

4. Homogenization and experimental verification

4.1. Outline of asymptotic homogenization method

In this paper, a linearly elastic problem is considered. The original formulation was presented in the early

studies on the asymptotic homogenization method in 1980s (Sanchez-Palencia, 1980; Lions, 1981), and

therefore only the outline of the formulation is described. However, the problem involved in applying this

method to a material with random microstructure architecture is pointed out.

A macroscopic structure X is supposed to be made of a material that has the microscopic heterogeneity.

If we can define a microscopic unit cell structure Y that can represent the global heterogeneity, the macro-
scopic properties can be defined as the volumetric average of the microscopic properties in the unit cell. The

heterogeneous material can be replaced by the equivalent homogenized model. Now, it is assumed that the

unit cell is repeated periodically.

Define the macroscopic scale x and the microscopic scale y, and define the scale ratio e that is usually a
very small positive number so that y ¼ x=e. Write the displacement u asymptotically by means of the two-
scale singular perturbation theory.

uiðx; yÞ ¼ u0i ðxÞ þ eu1i ðx; yÞ ð1Þ
In this equation, u0i is a macroscopic (or homogenized) displacement and u1i is a perturbed term due to the

microscopic heterogeneity. The former is proved to be a function of macroscopic scale only (Sanchez-

Palencia, 1980; Lions, 1981).

We suppose that the traction ti is applied on the boundary C and the body force is neglected. An elasticity
tensor is denoted as Eijkh. By taking the limit of e ! 0 for homogenization, we finally obtain the decoupled

microscopic and macroscopic equations. In this derivation, u1i in Eq. (1) is assumed to be written by the
following:

u1i ðx; yÞ ¼ �vkh
i ðyÞ

ou0kðxÞ
oxh

ð2Þ

where vkh
i is a characteristic displacement that is a periodic function with respect to the microscale. The

microscopic equation to be solved for the unit cell Y under the periodic boundary condition is as follows:Z
Y

Eijkh

�
� Eijmn

ovkh
m

oyn

�
ov1i
oyj

dY ¼ 0 for 8v1i ð3Þ

The existence and the uniqueness of the solution of Eq. (3) is shown in Sanchez-Palencia (1980) and Lions

(1981). The macroscopic equation is derived as

Z
X
EH
ijkh

ou0k
oxh

ov0i
oxj

dX ¼
Z

C
tiv0i dC for 8v0i ð4Þ
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where EH
ijkh is the homogenized elasticity tensor that is also symmetric defined by

EH
ijkh ¼

1

jY j

Z
Y

Eijkh

�
� Eijmn

ovkh
m

oyn

�
dY ð5Þ

where jY j is the volume of the unit cell.
The microscopic stress can be calculated by the following equation:

rij ¼ Eijkh

�
� Eijmn

ovkh
m

oyn

�
ou0k
oxh

ð6Þ

In this equation, ðou0k=oxhÞ is constant in the unit cell Y , and vkh
m is a periodic function, and thus the micro-

scopic stress is periodic with respect to the microscale.

For some continuous fiber reinforced composites, we can find easily the periodicity of the microscopic

unit cell (Takano et al., 2000). For the materials with random microstructure, it is known qualitatively that
the size of the unit cell must be large enough to represent the global heterogeneity through two-dimensional

analyses (Terada and Kikuchi, 1998; Moulinec and Suquet, 1998). However, no literature is found that

proved it in the three-dimensional analysis because the three-dimensional analysis is usually very expensive

(Smit et al., 1999). That is, the three-dimensional unit cell modeling for those materials is still a problem to

be conquered not only in the homogenization procedure but also in the evaluation of the microscopic stress.

4.2. Unit cell modeling

As mentioned above, the extraction of the minimum size of the unit cell is required to reduce the

computational cost, but it must be large enough to represent the global heterogeneity. In addition to de-

termining the unit cell size, the location to extract the unit cell from the whole region in Fig. 3 is very

important to ensure the objectivity. Now the influence of the voxel element size is discussed in Section 3.2.

Fig. 4 shows the unit cell models with 980 000 elements extracted from different location in the whole
region shown in Fig. 3. The unit cell size is 280 lm� 280 lm� 100 lm. Each cubic voxel element size is 2
lm, which is discussed in detail in Section 3.2. Tables 2 and 3 show the calculated elastic constants by the

two unit cell models. The Young�s modulus of alumina is 404 GPa, and the Poisson�s ratio is 0.239. The
computational results show slight orthotropy. It is supposed that the orthotropy is due to the orientation of

the fugitive inclusion in the press forming process. The pressure is applied for forming in the third direction

in Figs. 3 and 4. The prediction tells that the Young�s modulus in the third direction is lower, but is almost
isotropic in the 1–2 plane. This is reasonable due to the orientation of the needle-like pores in the 1–2 plane

as shown in the figures. What is important is that the predicted values by the two unit cell models agree well
with each other. That is, the location of the unit cell is not influential on the computational results. Also, it

is considered that the unit cell size is large enough to take the volumetric average.

To investigate further on the unit cell size, a larger unit cell model is studied as shown in Fig. 5. The unit

cell size is 400 lm� 400 lm� 100 lm. The location to extract the unit cell is again different from the

above smaller unit cell models. The predicted elastic constants are shown in Table 4. Comparing the values

in Table 4 with those in Tables 2 and 3, it is concluded that the smaller unit cell models in Fig. 4 are large

enough and cost-effective for the multi-scale analysis.

Note here that a standard personal computer (CPU: Pentium III, 500 MHz) is used for every analysis.
The required core memory was 1 GB for the model with approximately one million elements, and 2 GB for

two million elements by virtue of the EBE-SCG solver as mentioned in Section 3.1.
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Table 2

Predicted elastic constants by a unit cell model A with approximately one million voxel elements

E11, E22, E33 (GPa) 379.3 378.6 365.3

G23, G31, G12 (GPa) 149.3 149.5 153.0

m21, m31, m32 0.236 0.231 0.231

Fig. 4. Unit cell models with approximately one million voxel elements (280 lm� 280 lm� 100 lm).

Table 3

Predicted elastic constants by a unit cell model B with approximately one million voxel elements

E11, E22, E33 (GPa) 381.4 378.8 364.0

G23, G31, G12 (GPa) 149.2 149.9 153.3

m21, m31, m32 0.236 0.229 0.231
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4.3. Comparison with experiment

By the digital image-based modeling and the homogenization, it is found this porous alumina with

needle-like pores shows slight orthotropy. However, as mentioned in Section 2, the measurement of the

elastic constants was carried out in only the third direction in Fig. 3, which is the pressured direction during

forming. Therefore, the Young�s modulus in the third direction E33 was compared between the measure-
ment (Table 1) and the numerical prediction (Tables 2–4). Obviously, the both agree quite well, and the

relative error is approximately 1%.
The authors have proved so far that the same modeling and analysis strategy presented in this paper

works well for porous alumina with spherical random pores with some porosity ratios ranging from 1% to

6% (Kimura et al., 2002). In that previous work, Hashin–Shtrikman�s bound (Hashin and Shtrikman, 1963)
can also predict well the homogenized properties because the shape of pores is simply spherical and because

the porosity ratio is low. That is, the numerical prediction using the voxel modeling and homogenization

method agreed well with both experimental results and the Hashin–Shtrikman�s bound. However, the
authors also found that the shape of the pores is much influential on the homogenized properties, and they

can not be predicted by referring only the porosity ratio. Therefore, the present result for porous alumina
with needle-like pores is advantageous over other related works.

Although the porosity ratio in this paper is low, other materials are now under preparation with

higher porosity ratio and with obvious anisotropy. See also Beppu et al. (2001) for the advanced sintering

Fig. 5. Unit cell model with two million voxel elements (400 lm� 400 lm� 100 lm).

Table 4

Predicted elastic constants by a unit cell model with two million voxel elements

E11, E22, E33 (GPa) 381.3 377.1 362.0

G23, G31, G12 (GPa) 148.2 149.2 153.2

m21, m31, m32 0.235 0.228 0.231
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technology of highly porous ceramics. In such cases with anisotropy, bounds or other estimates may fail,

whilst the present numerical analysis can be very effective.

5. Multi-scale analysis under four-point bending and microscopic stress evaluation

5.1. Problem’s setting

In this section, a four-point bending problem of the porous ceramic with needle-like pores is studied, and

both macroscopic and microscopic behaviors are analyzed using the homogenization method. Fig. 6 shows

the specification of the four-point bending problem. A quarter part was modeled by hexahedral finite ele-

ments as shown in Fig. 7. The number of elements is 6000, and the number of nodes is 7776. A regular mesh

is used, and each element size is 250 lm� 400 lm� 400 lm. The 1–2–3 coordinate system in Figs. 6 and 7

corresponds to that for the microstructures.

Two types of porous alumina with different porosity ratio were considered. The one has 3.1% porosity

ratio as described in Section 4. Another material has higher porosity ratio, i.e., approximately 23%, but the
contained needle-like pore is the same with the material with 3.1% porosity ratio. Fig. 8 shows the unit cell

model of the material with 23% porosity ratio. Some examples of the cross-sectional meshes are shown in

Fig. 9. Because the characteristic of the microscopic heterogeneity is the same between two porous materials

except the porosity ratio, the same strategy was taken to determine the unit cell size. That is, in Fig. 8, each

240N 240N

3.
0

40.0

30.0

10.0

12

3

Width 4.0

(Unit: mm)

Fig. 6. Specification of four-point bending problem.

Fig. 7. Finite element mesh of macrostructure.
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voxel element size is 2 lm, the unit cell size is 280 lm� 280 lm� 100 lm, and the number of voxel ele-
ments is 980 000. The homogenized stress-strain matrix is obtained as follows:

EH
23% ¼

266:6 72:8 61:5 1:3 �1:5 50:0
265:4 61:7 5:6 �0:4 1:1

194:6 3:6 �0:7 �0:2
78:5 �0:5 �0:5

sym: 80:1 2:1
96:0

2
6666664

3
7777775

ðGPaÞ ð7Þ

The degree of the anisotropy is increased for the porous ceramic with high porosity ratio, which is due to
the degree of orientation of the needle-like pores caused in the forming process. It is reasonable that the

Fig. 8. Unit cell model of porous alumina with 23% porosity ratio.

Fig. 9. Cross-sectional meshes of porous alumina with 23% porosity ratio.
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oriented needle-like pores in the 1–2 plane results in the lower value of E3333, which is supported by the rule
of mixture for fiber reinforced composites.

5.2. Multi-scale stress analysis

Fig. 10 shows the macroscopic stress rH
11 in the longitudinal direction of the beam made by porous

alumina with 3.1% porosity ratio. In this analysis, the same load is applied for two types of materials, and

consequently the macroscopic stress distribution is almost same between two materials with different

porosity ratios.

The microscopic stress can be analyzed by Eq. (6). In this paper, the microscopic stress was analyzed at

the position where the maximum tensile stress is seen as shown in Fig. 10. Note here that the thickness of

the beam is 3 mm, and the dimension of the unit cell in the thickness direction (3rd direction) is 100 lm.
Hence, the repeated number of periodicity is 30 in the thickness direction. Although the macroscopic strain

in Eq. (6) is linearly distributed in the thickness direction, the assumption that the macroscopic strain is

nearly constant in the unit cell may be accepted. If the number of periodicity is small, we need to use other

computational method such as the finite element mesh superposition method (Takano and Zako, 2001b) or

the higher-order theory.

Fig. 11 shows the microscopic stress r11 for the unit cell model A in Fig. 4 with 3.1% porosity ratio. The

stress concentration on the boundary surface of the unit cell is seen in Fig. 11, however this is due to the

Fig. 11. Microscopic stress distribution in case of 3.1% porosity ratio for unit cell model A (280 lm� 280 lm� 100 lm).

Fig. 10. Macroscopic stress distribution under four-point bending by a quarter model.
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assumption of the periodic boundary condition compulsorily put for the random microstructure archi-

tecture. Therefore, the boundary surface layer should be excluded in evaluating the microscopic stress.

From the authors� preliminary studies (Kubo et al., 2000; Takano et al., in press), 10% in length from the

boundary surface was omitted, and we use only the inner region (224 lm� 224 lm� 80 lm) for the stress
evaluation as shown in Fig. 12. In the same manner, the microscopic stress distribution for the unit cell

model B is shown in Fig. 13.

In case of porous alumina with 23% porosity ratio, the calculated microscopic stress r11 in the inner
region of the unit cell model is shown in Fig. 14. In this case with higher porosity ratio, the stress con-

centration is outstanding. Some of the cross-sectional views are shown in Fig. 15.

5.3. Evaluation of microscopic stress distribution

Only qualitative discussion may be possible by the three-dimensional and the cross-sectional displays of

the microscopic stress distribution. Or it is even difficult to understand the relation between the stress

concentration and the three-dimensional distribution of the needle-like pores. However, the quantitative

evaluation is essential for the materials scientists and engineers.

Fig. 12. Microscopic stress distribution in case of 3.1% porosity ratio in inner region of unit cell model A (224 lm� 224 lm� 80 lm).

Fig. 13. Microscopic stress distribution in case of 3.1% porosity ratio in inner region of unit cell model B (224 lm� 224 lm� 80 lm).

N. Takano et al. / International Journal of Solids and Structures 40 (2003) 1225–1242 1237



This paper proposes a histogram display of the microscopic stress distribution. Furthermore, the in-
formation of the distance from the nearest pore is plotted together in the histogram. The definition of the

distance is shown in Fig. 16 for the two-dimensional case for simplicity, where the nature of the voxel mesh

Fig. 14. Microscopic stress distribution in case of 23% porosity ratio (224 lm� 224 lm� 80 lm).

Fig. 15. Cross-sections for porous alumina with 23% porosity ratio.

Fig. 16. Definition of distance for voxel mesh.
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is utilized. Because both solid part and pore are subdivided into voxel elements as described in Section 3.2

and consequently the voxel mesh is absolutely regular, it is very easy to calculate the distance from the

nearest pore for all the voxel elements by this simple definition. Although the voxel meshing for the pore

part leads to the increase of actual number of elements and to the decrease of computational performance,
it is effective for this stress evaluation.

Fig. 17 shows the obtained histograms for the unit cell models A and B with 3.1% porosity ratio. Here,

the longitudinal stress r11 is shown for only the inner region of the unit cell models. The distance expressed
by ‘‘d’’ in Fig. 17 is also plotted. The tendency is very close between the unit cell models A and B. It means

that the location to extract the unit cell is not influential on the stress evaluation as well as the homoge-

nization procedure. It is clearly found the high stress is observed at the neighborhood of the pores for small

‘‘d’’. As was mentioned in Section 3.1, the accuracy of the solution by the voxel mesh is bad at the interface
(d ¼ 1 in this study). Therefore, it is reasonable to neglect the stress for the elements with d ¼ 1 in eva-
luation. Also, if we suppose that a point-wise stress is not usually used for evaluation or prediction of

fracture, the exclusion of elements with d ¼ 1 may not cause any problem. For instance, Terada and Ki-

kuchi (1996) used an averaged stress in each phase for a two-phase material to determine numerically the

phase distribution so that the mismatch of the stress is minimized. They did not pay any attention to

the accuracy of the interface stress. However, excluding the elements with d ¼ 1 will increase the accuracy.

The proposed histogram makes such evaluation quite easy.

For the material with higher porosity ratio, Fig. 18(a) shows the histogram of microscopic stress r11 in
the whole unit cell region (280 lm� 280 lm� 100 lm). Fig. 18(b) shows that in only the inner region
(224 lm� 224 lm� 80 lm). It is interesting that the high stress can be seen in Fig. 18(a) for the elements
with d P 6 that are apart from the pores. Those elements are in the boundary surface layer of the unit cell.

Because of the compulsory assumption of the periodic boundary condition, critical error is included for

those elements. Indeed, in Fig. 18(b), the high stress can not be seen for the elements with d P 6. For the

Fig. 17. Histogram display of microscopic stress distribution with distance information in case of 3.1% porosity ratio (224 lm�
224 lm� 80 lm). (a) Unit cell model A and (b) unit cell model B.
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materials with high porosity ratio that are often used for filters, the necessity to omit the boundary layer of
the unit cell in evaluating the microscopic stress is again recognized.

Although the apparent peak was seen for low porosity ceramic in Fig. 17, the tendency is quite different

in case of the high porosity ratio. In other words, the stress concentration is very localized in case of the low

porosity ratio. Using the histogram, the region where the stress concentration occurs can be observed

easily. Fig. 19 shows the regions where the microscopic stress r11 is higher than 0.9, 0.6 and 0.5 GPa for the
unit cell model A with 3.1% porosity ratio. It is found that every pore causes the stress concentration, but

that strong stress concentration is localized near some pores probably due to the clustering of pores. We can

Fig. 19. High stress region for unit cell model A with 3.1% porosity ratio: (a) r11 P 0:90 GPa, (b) r11 P 0:60 GPa and (c) r11 P 0:50 GPa.

Fig. 18. Histogram display of microscopic stress distribution with distance information in case of 23% porosity ratio: (a) whole unit cell

region (280 lm� 280 lm� 100 lm), (b) inner region of unit cell (224 lm� 224 lm� 80 lm).
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say this is the only way to visualize the three-dimensional phenomena effectively and friendly, and it is much

easier and more useful for us to understand than watching multiple cross-sectional views.

The proposed methods to evaluate the three-dimensional microscopic stress, i.e., a histogram with dis-

tance information and the visualization like Fig. 19, are not implemented in any currently existing software.
But, we expect that it can accelerate the ongoing study on the fracture and micromechanism for various

porous ceramics.

6. Conclusion

A multi-scale computational method using the homogenization method was applied to the porous alu-

mina with 3.1% and 23% porosity ratios. The digital image-based modeling technique was used to generate
the voxel mesh automatically. To express the microscopic heterogeneity in this study, the resolution of the

voxel mesh was determined to be 2 lm. Using the unit cell model with 2 lm resolution and with ap-

proximately one million elements, the predicted homogenized elastic constants had only 1% error compared

with the measured values. Both the practicality and the objectivity were assured. Next, the four-point

bending problem was analyzed. To evaluate the microscopic stress quantitatively and to understand the

relation between the stress concentration and the three-dimensional dispersion of needle-like pores, a

histogram display with distance information from the nearest pore was proposed. The numerical error

caused by the compulsory periodicity assumption for the random microstructure and by the voxel mesh was
discussed. The histogram display was effective to recognize the local region where the stress concentration

occurs. The four-point bending test as shown in Section 5 is now under preparation in order to investigate

the correlation between the fracture in experiment and the calculated microscopic stress distribution.
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